Matemàtiques (nivell ESO)/Equacions de 1r grau

DefinicionsModifica

Una equació de primer grau és una equació a la qual cada membre està format per sumes o restes de números multiplicats per una lletra que no té exponent. És a dir, els termes són de grau 1.

Com a exemples tenim:

  •  
  •  
  •  

Notem que les variables poden tenir qualsevol nom i no ha de ser necessàriament  . A més, hi pot haver diverses variables sempre que els termes siguin de grau 1. L'elecció de la lletra per a cada incògnita se sol fer d'acord al context del problema.

Per extensió, una equació de primer grau també és qualsevol equació que es pugui transformar mitjançant manipulacions algebraiques en una equació de les que hem descrit abans. Entre aquestes altres equacions, n'hi ha algunes que semblen de segon grau, però de fet també es poden reduir a una de primer grau.


Mètode de resolucióModifica

El mètode de resolució consisteix a trobar equacions equivalents. És a dir, es parteix d'una equació i s'apliquen certes regles per transformar-la en una equació que tengui les mateixes solucions però que sigui d'alguna forma més simple, ja sigui perquè té menys termes, té menys parèntesis, s'han eliminat els denominadors, etc.

Ho explicarem aquest procés de trobar equacions equivalents per ordre creixent de complexitat. D'aquesta forma s'exposarà en primer lloc els últims passos del procés fins arribar en darrer lloc als primers passos.


Cas 1: Les equacions més simplesModifica

La incògnita està només multiplicada o dividida per algun número. I l'altre membre té un únic terme amb un número. Per exemple:

  •  
  •  
  •  
  •  

En aquest punt s'utilitza la regla de la multiplicació/divisió.

Exemple. L'equació   podria correspondre a un problema similar al següent:

 Tres pesos iguals fan un total de 120 kg. Quant fa cada pes?

En aquest problema, resulta clar que cada pes hauria de fer 40 kg. El que s'ha fet és la divisió  

De forma general,

  • Quan hi hagi un nombre multiplicant a la incògnita només a un dels membres, aquest número passa dividint a tot l'altre mebre.
  • Quan hi hagi un nombre dividint a la incògnita només a un dels membres, aquest número passa multiplicant a tot l'altre membre.

Després d'haver fet aquest pas, cal simplificar fins a trobar un nombre enter o bé la fracció irreductible.

Exemples:

Exemple 1

L'equació  

es converteix en

 

No podem simplificar el resultat perquè ja és una fracció irreductible.

Queda el mateix resultat.

Exemple 2

L'equació  

es converteix en

 

I deprés simplificam:

Queda

 

Exemple 3

L'equació  

es converteix en

 

I després simplificam. Queda

 

Exemple 4

L'equació  

es converteix en

 

I després passam al cas 1.

Queda

 

Exemple 5

L'equació  

es converteix en

 

Simplificam i obtenim:

 

Exemple 6

L'equació  

es converteix en

 

La simplificam

 

Exemple 7

L'equació  

es converteix en

 

Simplificam i obtenim

 

Exemple 8

L'equació  

es converteix en

 

Simplificam i obtenim

 

Cas 2: Equacions que tenen les incògnites al primer membre i els termes sense incògnita al segon membreModifica

S'han de realitzar les sumes i restes d'un membre fins a obtenir un sol terme en aquest membre. I a continuació fer el mateix a l'altre membre. L'equació equivalent que obtenguem es podrà resoldre segons el cas 1.

Per exemple:

Exemple 1

L'equació

 

es converteix en

 

I després aïllam i simplificam:

 

Exemple 2

L'equació  

es converteix en

 

I després aïllam i simplificam:

 

Cas 3: Equacions amb termes mesclats a cada membreModifica

En aquest cas, hi ha termes amb la incògnita i termes sense la incògnita a un mateix membre. De vegades, també als dos membres.

El que farem serà traslladar els membres amb incògnita a un sol membre i els termes sense la incògnita a l'altre membre. Sovint les incògnites a l'esquerra. L'equació equivalent que obtenguem es podrà resoldre per mijtà del cas 2.

Les regles que s'usen per als trasllats són les següents:

  • Un terme que està sumant a un membre pot passar a l'altre membre restant.
  • Un terme que està restant a un membre pot passar a l'altre membre sumant.

Aquest procediment s'anomena transposició de termes

Mirau els vídeos per a les explicacions detallades.

Exemple 1

 

Exemple 2

 

Exemple 3

 

Exemple 4

 

Solucions:

Cas 4: Multiplicació de números per diversos termesModifica

L'equació conté algun parèntesi que engloba diversos termes no homogenis i està multiplicat per algun número. En aquest cas s'ha d'aplicar la propietat distributiva per desfer cada parètensi. En resultarà una equació equivalent que es podrà resoldre segons el cas 3.

Alguns exemples:

Exemple 1

 

Exemple 2

 

Exemple 3

 

Exemple 4

 

Exemple 5

 

Solucions als exemples. Durada 15'09"

Importància del signeModifica

De vegades hi ha un signe menys davant un parèntesi, com ara:

 

 

Un signe menys canvia el signe a tots els termes que hi hagi dins el parèntesi quan aplicam la propietat distributiva.


Tres exemples: quan només tenim expressions (no igualtats)


Exemples Expressió Com es desenvolupa
1    
2    
3    
4    
5    

Exemples quan tenim canvis de signes dins una expressió.

Exemple:  

1 Eliminar parèntesis Aplicam la propietat distributiva a cada membre de l'equació:

 

 

Hem tengut en compte la regla dels signes de la multiplicació/divisió.
1 Moure termes Es podria continuar resolent l'equació:

Passam els termes amb   al primer memebre i els termes sense lletra al segon membre.

 
1 Sumes i restes Simplificam els termes semblants:  
1 Aïllar la incògnita El nombre que multiplica la   passa al segon membre dividint.  


Exemples Com es desenvolupa

Exemple 2

 

Vegem com s'aplica la propietat distributiva per eliminar el parèntesi i com afecta al signe:

      Enunciat
      Hem aplicat la propietat distributiva


A continuació resolem l'equació.

 
   
Hem passat termes amb x al primer membre i termes numèrics al segon membre
 
    Simplificació de termes (sumes i restes)
     
Hem aïllat la x per trobar la solució
     
Simplificam la solució

Exemple 3

 

Encara que no hi hagi cap parèntesi, cada numerador actua com un bloc i per tant es pressuposa que hi ha un parèntesi. El signe afecta a cada un dels termes dels numeradors.

      Enunciat
      Separam en fraccions que tenen un sol terme als numeradors. Observem hi ha dos signes   que han passat a  


A continuació resolem l'equació.

 
   
Multiplicam cada fracció pel denominador comú, 6. De fet aplicam novament la propietat distributiva.
 
    Hem simplificat les operacions de cada fracció
     
Hem aïllat la x per trobar la solució
     
Simplificam els termes (sumes i restes)
     
Aïllam la  
     
Simplificam els signes

Resolució de problemesModifica

Per a resoldre un problema mitjançant una equació, s'han de traduir al llenguatge algèbric les condicions de l'enunciat, i després resoldre l'equació plantejada.

Comença per llegir atentament l'enunciat, fins que estiguis segur de que comprens bé el que s'ha de calcular i les dades que et proporcionen.

Un cop l'equació està resolta, s'obté la solució del problema.