Viquiprojecte:CEPA Sa Pobla/ESPA/Matemàtiques/Matemàtiques 2.1/Unitat 1/Nombres racionals

Definició

modifica

S'anomena nombre racional[1] a tot aquell nombre que pot ser expressat com a resultat de la divisió de dos nombres enters, amb el divisor diferent de 0.

El conjunt dels racionals es representa amb la lletra   o Q, de quocient.

Aquest conjunt de nombres conté el dels nombres enters i és un subconjunt dels nombres reals. Els reals que no pertanyen a aquest conjunt s'anomenen irracionals.

Els nombres racionals es caracteritzen per tenir un desenvolupament decimal (o en qualsevol base) finit o periòdic, és a dir que un racional té un nombre de xifres decimals finit, o bé que aquestes es repeteixen de manera regular.


Notació

modifica

Els nombre racionals es poden representar de diferents formes; les més comunes són les fraccions irreductibles i les representacions decimals, però també es poden representar en altres bases diferents de la base 10 i emprant altres fraccions com les fraccions egípcies.


Fraccions

modifica

Els nombres racionals no enters normalment es noten com a fraccions:

 

on b ha de ser diferent de zero. En aquest cas, a s'anomena el numerador, i b el denominador.

Cada nombre racional es pot escriure en una infinitat de fraccions diferents, com ara

 

però es diu que està expressat en la seva forma més senzilla o que està expressat amb la seva fracció irreductible quan a i b no tenen cap divisor comú excepte l'1 (és a dir són coprimers).

Tot nombre racional diferent de zero té una i només una expressió en fracció irreductible amb denominador positiu.


Representació decimal

modifica

La representació decimal d'un nombre és una extensió de la representació posicional en base 10 a base de fer servir fraccions on els denominadors són múltiples de 10. Per exemple:

 

Per a indicar que un nombre en representació decimal té unes xifres decimals que es repeteixen indefinidament s'escriu una ratlla al damunt de les xifres que es repeteixen. Per exemple:

 

vol dir:

 

Classificació de nombres

modifica

https://es.khanacademy.org/math/cc-eighth-grade-math/cc-8th-numbers-operations/cc-8th-irrational-numbers/v/categorizing-numbers


Referències

modifica
  1. Viquipèdia, Nombre racional